Distinct role of interleukin-6 and tumor necrosis factor receptor-1 in oval cell- mediated liver regeneration and inflammation-associated hepatocarcinogenesis
نویسندگان
چکیده
Interleukin 6 (IL6), tumor necrosis factor α (TNFα) and TNF receptor-1(TNFR1) have been shown to involve in oval cell proliferation and hepatocellular carcinoma (HCC) development. However, their role in these processes is still unclear. In the present study, by using hepatocytes-specific DDB1 deletion mouse models, we explored the role and mechanism of IL6, TNFα and TNFR1 in oval cell proliferation and HCC development in the context of inflammation, which is the common features of HCC pathogenesis in humans. Our results showed that IL6 promotes oval cell proliferation and liver regeneration, while TNFα/TNFR1 does not affect this process. Deletion of IL6 accelerates HCC development and increases tumor burden. The number of natural killer(NK) cells is significantly decreased in tumors without IL6, implying that IL6 suppresses HCC by NK cells. In contrast to IL6, TNFR1-mediated signaling pathway promotes HCC development, and deletion of TNFR1 reduced tumor incidence. Increased apoptosis, compensatory proliferation and activation of MAPK/MEK/ERK cascade contribute to the oncogenic function of TNFR1-mediated signaling pathway. Intriguingly, deletion of TNFα accelerates tumor development, which shows divergent roles of TNFα and TNFR1 in hepatocarcinogenesis.
منابع مشابه
Impaired Preneoplastic Changes and Liver Tumor Formation in Tumor Necrosis Factor Receptor Type 1 Knockout Mice
Hepatic stem cells (oval cells) proliferate within the liver after exposure to a variety of hepatic carcinogens and can generate both hepatocytes and bile duct cells. Oval cell proliferation is commonly seen in the preneoplastic stages of liver carcinogenesis, often accompanied by an inflammatory response. Tumor necrosis factor (TNF), an inflammatory cytokine, is also important in liver regener...
متن کاملEffects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کاملDual Role of the Adaptive Immune System in Liver Injury and Hepatocellular Carcinoma Development.
Hepatocellular carcinoma (HCC) represents a classic example of inflammation-linked cancer. To characterize the role of the immune system in hepatic injury and tumor development, we comparatively studied the extent of liver disease and hepatocarcinogenesis in immunocompromised versus immunocompetent Fah-deficient mice. Strikingly, chronic liver injury and tumor development were markedly suppress...
متن کاملProtective effect of interleukin-36 receptor antagonist on liver injury induced by concanavalin A in mice
Objective(s): Interleukin-36 receptor antagonist (IL-36Ra) is a new member of the IL-1 family that exhibits anti-inflammatory activity in a variety of inflammatory and immune diseases. Our purpose was to determine the effect of IL-36Ra on liver injury in a mouse hepatitis model induced by concanavalin A (ConA). Materials and Methods: Mic...
متن کاملHGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model.
Oval cells constitute an interesting hepatic cell population. They contribute to sustain liver regeneration during chronic liver damage, but in doing this they can be target of malignant conversion and become tumor-initiating cells and drive hepatocarcinogenesis. The molecular mechanisms beneath either their pro-regenerative or pro-tumorigenic potential are still poorly understood. In this stud...
متن کامل